Abstract

In brushless permanent-magnet dc (BLDC) machines, the attraction between the rotor permanent magnets and the stator iron causes radial stator forces that excite the stator structural response and radiate unwanted acoustic noise. In this paper, we develop an analytical model that predicts rotor torque and radial force ripple as functions of the stator currents. The model shows that field weakening of sinusoidally commutated BLDC machines can reduce radial forces but requires higher currents to maintain the desired torque. We confirmed the analytical results numerically on a BLDC motor using ANSYS finite-element analysis and found a 30% reduction in force ripple at no load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call