Abstract

Innovations in precision agriculture (PA) have created opportunities to achieve a greater understanding of within-field variability. However, PA adoption has been hindered by uncertainty about field-specific performance and return on investment. Uncertainty could be better addressed by using innovative analyses that provide insights into variability among fields and across a region. The objectives of this research were to: (1) generate a within-field soil clay-content variability index (VIc), (2) create a regional-scale growing-season precipitation variability index (VIp), and (3) integrate the soil and weather indices with the USDA NRCS soil erosion vulnerability index (SVI) to produce a final index that incorporated both variability and vulnerability (VVI). The interpretation of the outcomes represented by each objective supports unique decisions that land managers may consider for reducing uncertainty about implementing PA. All indices were derived using publically available information for Missouri, USA. The VIc was the ratio between the maximum and minimum clay content within fields. The VIp was calculated as the standard deviation of the total growing-season precipitation from 2006 to 2015. Significant clustering of VIc and VIp were observed along the Missouri River corridor, northeast and northwest Missouri. Fields with high VVI were mostly in the claypan soil region of northeast Missouri, and along a portion of the Missouri River dominated by loess soils on steep slopes. Southeast Missouri displayed the greatest diversity in soil and weather variability, but had low vulnerability. This research could be used as a decision-support tool to aid producers and PA service and product providers in determining where PA opportunities exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call