Abstract

The integration of wind power plants introduces new dynamics into power systems, forcing reconsiderations of how they are studied, planned, and operated. High quality models are essential to these studies. Manufacturer-specific electromagnetic transient (EMT) wind turbine models are usually available only as black-boxes, which hinders analysis and research. To overcome this issue, this paper proposes a generic EMT-type model for a specific type-IV wind turbine system, which is validated against field measurements from a wind turbine of the same type. More precisely, it proposes a wind turbine model based on an externally excited synchronous generator system connected to a full converter composed of a six-pulse diode rectifier, a dc–dc boost stage and a two-level voltage source converter. The required control features and internal protection schemes are considered and described. Two different fault ride-through control strategies, in line with existing grid codes, are implemented. A corresponding EMT-type hybrid model representation is also developed based on newly proposed switched equivalent circuits and average models for the considered hardware, control, and power electronics stages. It allows for the use of larger simulation time steps, hence considerably improving computation times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call