Abstract

A convenient and general decomposition of the photon self-energy in a magnetized, but otherwise isotropic, medium is given in terms of the minimal set of tensors consistent with the transversality condition. As we show, the self-energy in such a medium is completely parametrized in terms of nine independent form factors, and they reduce to three in the long wavelength limit. We consider in detail an electron gas with a background magnetic field, and using finite temperature field theory methods, we obtain the one-loop formulas for the form factors, which are exact to all orders in the magnetic field. Explicit results are derived for a variety of physical conditions. In the appropriate limits, we recover the well-known semi-classical results for the photon dispersion relations and the Faraday effect. In more general cases, where the semi-classical treatment or the linear approximation (weak field limit) are not applicable, our formulas provide a consistent and systematic way for computing the self-energy form factors and, from them, the photon dispersion relations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call