Abstract
We calculate the relaxational dynamical critical behavior of systems of O(n_{ parallel}) plus sign in circleO(n_{ perpendicular}) symmetry including conservation of magnetization by renormalization group theory within the minimal subtraction scheme in two-loop order. Within the stability region of the Heisenberg fixed point and the biconical fixed point, strong dynamical scaling holds, with the asymptotic dynamical critical exponent z=2varphinu-1 , where varphi is the crossover exponent and nu the exponent of the correlation length. The critical dynamics at n_{ parallel}=1 and n_{ perpendicular}=2 is governed by a small dynamical transient exponent leading to nonuniversal nonasymptotic dynamical behavior. This may be seen, e.g., in the temperature dependence of the magnetic transport coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review E
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.