Abstract

Glasses at low temperature fluctuate around their inherent states; glassy anomalies reflect the structure of these states. Recently, there have been numerous observations of long-range stress correlations in glassy materials, from supercooled liquids to colloids and granular materials, but without a common explanation. Herein it is shown, using a field theory of inherent states, that long-range stress correlations follow from mechanical equilibrium alone, with explicit predictions for stress correlations in two and three dimensions. "Equations of state" relating fluctuations to imposed stresses are derived, as well as field equations that fix the spatial structure of stresses in arbitrary geometries. Finally, a new holographic quantity in 3D amorphous systems is identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.