Abstract

An effective low energy field theory is developed for a system of two chains. The main novelty of the approach is that it allows to treat generic intrachain repulsive interactions of arbitrary strength. The chains are coupled by a direct tunneling and four-fermion interactions. At low energies the individual chains are described as Luttinger liquids with an arbitrary ratio of spin $v_s$ and charge $v_c$ velocities. A judicious choice of the basis for the decoupled chains greatly simplifies the description and allows one to separate high and low energy degrees of freedom. In a direct analogy to the bulk cuprates the resulting effective field theory distinguishes between three qualitatively different regimes: (i) small doping ($v_c << v_s$), (ii) optimal doping ($v_s \approx v_c$) and (iii) large doping ($v_s << v_c$). I discuss the excitation spectrum and derive expressions for the electron spectral function which turns out to be highly incoherent. The degree of incoherence increases when one considers an array of ladders (stripe phase).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.