Abstract

We study the properties of the Bose polaron, an impurity strongly interacting with a Bose-Einstein condensate, using a field-theoretic approach and make predictions for the spectral function and various quasiparticle properties that can be tested in experiment. We find that most of the spectral weight is contained in a coherent attractive and a metastable repulsive polaron branch. We show that the qualitative behavior of the Bose polaron is well described by a non-selfconsistent T-matrix approximation by comparing analytical results to numerical data obtained from a fully selfconsistent T-matrix approach. The latter takes into account an infinite number of bosons excited from the condensate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call