Abstract

We study the fluctuation-induced interaction between two impurities in a weakly interacting one-dimensional Bose gas using the field-theoretical approach. At separations between impurities shorter and of the order of the healing length of the system, the induced interaction has a classical origin and behaves exponentially. At separations longer than the healing length, the interaction is of a quantum origin and scales as the third power of the inverse distance. Finite temperature destroys the quasi-long-range order of the Bose gas and, accordingly, the induced interaction becomes exponentially suppressed beyond the thermal length. We obtain analytical expressions for the induced interaction at zero and finite temperature that are valid at arbitrary distances. We discuss experimental realizations as well as possible formation of bound states of two impurities, known as bipolarons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.