Abstract

Offshore extreme-scale turbines of 20–25 MW in size may offer reduced energy costs. The technical barriers at these extreme scales include escalating blade masses with increased flexibility as well as high gravity loads and tower-strike issues. These barriers may be addressed with a load-aligning downwind turbine. To investigate this type of design, a field test campaign was conducted with an aeroelastically scaled rotor, termed the Segmented Ultralight Morphing Rotor Demonstrator (SUMR-D). The tests were conducted on the Controls Advanced Research Turbine at the National Renewable Energy Laboratory. The paper gives an overviewof the experimental diagnostics, blade design, and results of the field campaign, as well as makes conclusions and recommendations regarding extreme-scale highly flexible downwind rotors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.