Abstract

Piles supporting transmission towers, offshore structures (such as wind turbines), or infrastructures in seismic areas are frequently subjected to either one-way or two-way cyclic lateral loadings. Relatively little attention, however, has been paid to compare and understand the effects of different loading regimes (one-way or two-way cycling) on lateral responses of piles in soft clay. For this reason, a series of field tests in soft clay are carried out to compare one-way and two-way cyclic responses of single piles and of jet-grouting reinforced piles. The field tests reveal that the single pile subjected to two-way cycling experiences much more rapid degradation in lateral stiffness and capacity, but accumulates much smaller residual pile deflection (δ p), than the single pile under one-way cycling. This is because the reverse part of the two-way cycling also generates plastic strain, causing additional softening and strength reduction in the soil surrounding the pile. After each cycling, non-zero bending moment (i.e. locked in moment, or M L) is retained in the single piles, and the M L increases with the δ p. The one-way cycling leads to two times larger M L than the two-way cycling, as it causes greater δ p. The maximum M L in the pile after one-way cycling can be up to 40% of the maximum bending moment induced during the previous cyclic loading stage. After application of jet-grouting surrounding the upper part of the single pile, it greatly reduces degradation of lateral pile stiffness, accumulation of δ p and therefore development of M L. Compared to the field measurements, the API (API RP 2A-WSD, recommended practice for planning, designing, and constructing fixed offshore platform-working stress design, 21st edn. API, Washington, 2000) code underestimates the lateral stiffness of the pile under one-way cycling, while overestimates that of the pile under two-way cycling, leading to a non-conservative prediction of bending moment in the latter pile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.