Abstract

This paper presents findings of field tests and analysis of two conventionally reinforced concrete (CRC) deck girder bridges designed in the 1950s. The bridges are in-service and exhibit diagonal cracks. Stirrup strains in the bridge girders at high shear regions were used to estimate distribution factors for shear. Impact factors based on the field tests are reported. Comparison of field measured responses with AASHTO factors was performed. Three-dimensional elastic finite-element analysis was employed to model the tested bridges and determine distribution factors specifically for shear. Eight-node shell elements were used to model the decks, diaphragms, bent caps, and girders. Beam elements were used to model columns under the bent caps. The analytically predicted distribution factors were compared with the field test data. Finally, the bridge finite-element models were employed to compare load distribution factors for shear computed using procedures in the AASHTO LRFD and Standard Specifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call