Abstract

The ceramic YBa2Cu4O8 superconductor composed of submicron grains is considered a random Josephson-coupled network containing the so-called π junctions and shows successive phase transitions. With decreasing temperature, first the intragrain superconductive transition occurs inside each grain at Tc1 and then the chiral-glass transition occurs among the grains at Tc2 (< Tc1). The third transition at Tc3 (< Tc2) is the intergrain superconducting transition. We measured the nonlinear susceptibility and resistivity of the ceramic YBa2Cu4O8 superconductor to determine the field dependences of the transition temperatures Tc2 and Tc3. The phase diagram of the intergrain ordering is discussed in light of the result predicted by Kawamura.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.