Abstract

Simultaneous heat and mass transfer widely exists in nature and engineering, and it is of vital importance to enhance heat and mass transfer efficiency. In this paper, field synergy equation of heat and mass transfer is derived from its energy equation. Results show that the total transferred heat (including the conducted heat and the heat transferred by mass diffusion through the heat transfer interface) is determined by the values of fluid velocity and enthalpy gradient as well as the value of synergy angle α of velocity vector and enthalpy gradient field. Decreasing the value of α enhances the heat and mass transfer. This means the higher the synergy of velocity vector and enthalpy gradient field, the higher the total transferred heat. By the synergy principle of heat and mass transfer, some methods may be developed to improve the heat and mass transfer efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call