Abstract

The dynamical behavior of magnetic tunnel junctions (MTJs) was investigated by varying the magnetic field sweep rate from 0.01 mT/s to 10 T/s in a magneto optical Kerr effect set-up. The bias fields of the pinned and free ferromagnetic electrodes were found to drastically decrease above a field sweep rate of 1 T/s. This decrease in the bias fields coincides with a change in the magnetization reversal process from domain wall motion at low-field sweep rates to domain nucleation at high-field sweep rates. The nucleation of inverse domains in the ferromagnetic layer changes the interfacial spin structure of the antiferromagnetic layer and therefore the magnitude of the exchange bias effect. Furthermore, the nucleation of domains induces a discontinuous magnetic charge density at the tunnel barrier interfaces and this reduces the interlayer coupling between the two ferromagnetic electrodes of the MTJ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.