Abstract

Recent success in using a laser Doppler vibrometer (LDV) based acoustic-to-seismic (A/S) landmine detection [Sabatier, J. M. and Xiang, N. IEEE Trans. Geoscience and Remote Sensing 39 , 2001, pp.1146-1154.; Xiang, N. and Sabatier, J. M., J. Acoust. Soc. Am. 113 , 2003, pp. 1333-1341] and a ground penetrating synthetic aperture radar (GPSAR) [Bradley et al. Proc. SPIE , 4038 , pp.1001-1007, 2000] suggested a novel configuration of fused sensors comprised of a LDV-based A/S detection sensor and a GPSAR. Extensive field experiments revealed that these two technologies can be considered 'orthogonal'. When used in concert, a fused configuration may significantly improve the probability of detection and reduce the false alarm rate. They function best against different types of landmines under different burial conditions because they exploit disparate phenomena to detect mines. In order to better understand the fused detection ability, a co-located field experiment has been conducted using both a LDV-based A/S sensor and a GPSAR. This paper will discuss the comparative experimental study using the recent co-located field scanning results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.