Abstract

The quality of the functional near infrared spectroscopy (fNIRS) recordings is highly degraded by the presence of physiological interferences. It is crucial to efficiently separate the evoked hemodynamic responses (EHRs) from other background hemodynamic activities prior to any further processing.This paper presents a novel algorithm for physiological interferences reduction from the dual channel fNIRS measurements using ensemble empirical mode decomposition (EEMD) technique. The proposed algorithm is comprised of two main steps: (1) decomposing reference signal into its constituents called intrinsic mode functions (IMFs) and (2) adaptively defining appropriate weights of the corresponding IMFs to estimate the proportion of physiological interference in standard channel measurement.Performance of the proposed algorithm was evaluated using both synthetic and semi-real brain hemodynamic data based on four parameters of relative mean squared error (rMSE), Pearson's correlation coefficient (R2), percentage estimation error of peak amplitude (EPA) and peak latency (EL).Results obtained from synthetic data revealed that both the EEMD based normalized least mean squares (EEMD-NLMS) and EEMD based recursive least squares (EEMD-RLS) methods could reduce the average rMSE by at least 34% and 49%, respectively, when compared with widely used methods: block averaging, band-pass filtering and principal and/or independent component analysis. Furthermore, the two proposed methods outperform the regression method in reducing rMSE by at least 21% and 35% respectively when applied to semi-real data.An effective algorithm for estimating the EHRs from raw fNIRS data was proposed in which no assumption about the amplitude, shape and duration of the responses is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.