Abstract
Microbial corrosion and heavy metal accumulation in metal water supply pipelines aggravate scale formation and may result in pipeline leakage or bursting events. To better understand the corrosion and corrosion products in the damaged pipes, deposits excavated from three damaged pipes after 22–26 year service periods were analyzed. Using a combination of advanced micro-mineral techniques and 16S rRNA high-throughput sequencing, the micromorphology, chemical composition, and bacterial community were investigated systematically. Unlined pipe wall scales ruptured while lined pipes leaked due to joint scales. Dendrogram correlation results demonstrated that V/As, Al/Pb, and Cr/Mn clusters exhibited co-adsorption and co-precipitation characteristics. FTIR and XRD analysis detected the presence of γ-FeOOH, α-FeOOH in loose scales, and Fe3O4 in rigid scales. Scales were colonized by various corrosion bacteria, with sulfate reducing bacteria and ammonia producing bacteria being dominant in the scales of anticorrosive and non-corrosive pipe, respectively. Tl, Ca, Al, and Pb exhibited an extremely positive correlation with Rhodocyclaceae, Ferritrophicum, Thermodesulfovibrionia, and Clostridiaceae. Al and V presented a potential Hazard Quotient risk to consumers, while Cd was potentially bioavailable in all inner scales. Overall, this study provides valuable information for the effective management and avoidance of corrosion-induced pipeline damage and heavy metal release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.