Abstract

BTEX and chlorinated aliphatic hydrocarbons (CAHs) are the common pollutants found at contaminated sites, and natural attenuation (NA) of CAHs was widely observed where they coexist. In this work, the groundwater in a site co-contaminated with BTEX and CAHs was monitored for 1 year. The compositions and activities of the microfloras, especially dechlorinators and their relationships with the contaminants, geochemical properties, seasons and depth were evaluated. The results are consistent with the well-known NA conceptual model where CAHs are not able to stimulate the enrichment of dechlorinators alone, but BTEX does promote dechlorination. The higher temperature, rather than ORP in the deeper groundwater of the wet season became a key factor to promote the abundance of dechlorinators, but only when BTEX was available, indicating that the substrates from the BTEX biodegradation played an important role in the dechlorinator enrichment. The elevated ORP in the shallower groundwater exceeded the optimum conditions for reductive dechlorination and no significant seasonal variation of dechlorinators was found. The co-occurrence network revealed the cooperative interactions among the functional microfloras in which dechlorinators, BTEX degraders, and fermentative bacteria jointly promoted the dechlorination. These findings provided us a further understanding of the NA processes in a commingled plume.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call