Abstract

Generally numerical modelling can provide an accurate and cost-effective approach to understand the behaviour of geosynthetic-reinforced column-supported embankment. When the problem geometry cannot be simplified to the two-dimensional plane-strain or axisymmetric, a full three-dimensional solution is required to obtain sensible results. This study presents a modelling of the geosynthetic-reinforced composite ground supporting a road embankment. Response of soft soil is captured by adopting Modified Cam-Clay model. In addition, Hoek-Brown constitutive model is considered to simulate non-linear stress-dependent yield criterion for Concrete Injected Columns (CIC) that describes shear failure and tensile failure by a continuous function. To assess whether the proposed numerical model can capture real behaviour of composite ground, field monitoring data of deep soft clay deposit improved by CIC from Gerringong Upgrade is used to validate the model. The settlement and lateral displacements of ground, stress transferred to column, and pore water pressure results for the embankment during and after the construction, measured using the field instrumentations including settlement plates, inclinometers, earth pressure cells on CIC, and pore pressure transducers, are compared with numerical predictions. In addition, the numerical results provide insights to investigate load transfer mechanism in the composite ground, capturing response of soil – column - embankment system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call