Abstract

Pulsed magnets generate the highest magnetic fields as brief transients during which the observation of NMR is difficult, however, this is the only route to unique insight into material properties up to the regime of 100T. Here, it is shown how rather broad NMR spectra can be assembled in a pulsed magnet during a single field pulse by using the inherent time dependence of the field for the recording of field-stepped free induction decays that cover a broad frequency range. The technique is then applied to 11B NMR of the spin-dimer system SrCu2(BO3)2, a magnetic insulator known to undergo a series of field-driven changes of the magnetic ground state. At peak fields of about 54T at the Dresden High Magnetic Field Laboratory, 11B NMR spectra spanning a total of about 9MHz width are reconstructed. The results are in good accordance with a change from a high-temperature paramagnetic state to a low-temperature commensurate superstructure of field-induced spin-dimer triplets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.