Abstract

On-site specific capture is a critical step in accurate analysis of trace Pb(II) in environmental waters. In this connection, a new Pb(II)-imprinted polymer-based adsorbent (LIPA) was in-situ prepared in pipette tip and used as the extraction medium of laboratory-made portable three channels in-tip microextraction apparatus (TIMA). Density function theory was employed to verify the selection of functional monomers for the preparation of LIPA. The physical and chemical properties of the prepared LIPA were inspected with various characterization techniques. Under the beneficial preparation parameters, the LIPA presented satisfactory specific recognition performance towards Pb(II). Selectivity coefficients of LIPA towards Pb(II)/Cu(II) and Pb(II)/Cd(II) were 6.82 and 3.27 times higher than that of non-imprinted polymer-based adsorbent, respectively, and the adsorption capacity towards Pb(II) was as high as 36.8 mg/g. Freundlich isotherm model fitted well with the adsorption data, revealing that the adsorption of Pb(II) on LIPA was a multilayer process. After optimizing the extraction conditions, the developed LIPA/TIMA was employed to field selectively separate and enrich trace Pb(II) in various environmental waters followed by quantification with atomic absorption spectrometry. The enhancement factor, linear range, limit of detection and RSDs for precision were 183, 0.50–10000 ng/L, 0.14 ng/L and 3.2–8.4%, respectively. Accuracy of the developed approach was inspected by means of spiked recovery and confirmation experiments. Achieved results reveal that the developed LIPA/TIMA technique is good for field selective separation and preconcentration of Pb(II) and the introduced approach can be used to measure ultra-trace Pb(II) in a variety of waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call