Abstract

The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT.

Highlights

  • The Sterile Insect Technique (SIT) is an option for inclusion in area-wide integrated vector management (AW-IVM) programmes, where and when the necessary criteria have been met and it is the best of the alternatives

  • This paper examines two contrasting field sites where studies to develop area-wide integrated vector management (AW-IVM) including SIT are underway for controlling the malaria vector Anopheles arabiensis: the desert-isolated Dongola Reach of the Nile River in Northern State, Sudan and the French island of La Reunion in the Indian Ocean

  • The first example of successful genetic control of mosquitoes illustrates how even temporary isolation may be exploited; Cx. quinquefasciatus was eliminated within one season from a small Myanmar village surrounded by rice fields that were completely dry in winter [11]

Read more

Summary

Background

The Sterile Insect Technique (SIT) is an option for inclusion in area-wide integrated vector management This paper examines two contrasting field sites where studies to develop AW-IVM including SIT are underway for controlling the malaria vector Anopheles arabiensis: the desert-isolated Dongola Reach of the Nile River in Northern State, Sudan and the French island of La Reunion in the Indian Ocean. Much of the evaluation of a field site is general purpose when it comes to malaria control, so while factors such as capacity building, existing entomological information and national support are important considerations, the focus here is only on the factors most pertinent to SIT. The panel recommended four primary criteria upon which to base the choice of sites at which SIT might be employed: (1) an isolated vector population, (2) one vector species, (3) a low density vector population amenable to inundation with released males, and (4) significant actual or potential malaria transmission. The criteria are a simple primary guide that illustrate an ideal situation, but a consideration of past studies and the two detailed examples will illustrate that disparate situations can be suitable for the development of SIT for

Discussion
Conclusion
11. Laven H
19. Lotteau V
23. Lewis DJ
25. Girod R
Findings
29. Hichton RB
31. Shousha AT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.