Abstract

Abstract The spatial structure of bias errors in numerical model output is valuable to both model developers and operational forecasters, especially if the field containing the structure itself has statistical significance in the face of naturally occurring spatial correlation. A semiparametric Monte Carlo method, along with a moving blocks bootstrap method is used to determine the field significance of spatial bias errors within spatially correlated error fields. This process can be completely automated, making it an attractive addition to the verification tools already in use. The process demonstrated here results in statistically significant spatial bias error fields at any arbitrary significance level. To demonstrate the technique, 0000 and 1200 UTC runs of the operational Eta Model and the operational Eta Model using the Kain–Fritsch convective parameterization scheme are examined. The resulting fields for forecast errors for geopotential heights and winds at 850, 700, 500, and 250 hPa over a period of 14 months (26 January 2001–31 March 2002) are examined and compared using the verifying initial analysis. Specific examples are shown, and some plausible causes for the resulting significant bias errors are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.