Abstract
High‐resolution, three‐dimensional, reactive flow and transport simulations are carried out to describe the migration of hexavalent uranium [U(VI)] at the Hanford 300 Area bordering the Columbia River and to better understand the persistence of the uranium plume at the site. The computer code PFLOTRAN developed under a DOE SciDAC‐2 project is employed in the simulations that are executed on ORNL's Cray XT4/XT5 supercomputer Jaguar. The conceptual model used in the simulations is based on the recognition of three distinct phases or time periods in the evolution of the U(VI) plume. These correspond to (1) initial waste emplacement; (2) initial presence of both labile and nonlabile U(VI) with an evolved U(VI) plume extending from the source region to the river boundary, representing present‐day conditions; and (3) the complete removal of all nonlabile U(VI) and labile U(VI) in the vadose zone. This work focuses primarily on modeling Phase II using equilibrium and multirate sorption models for labile U(VI) and a continuous source release of nonlabile U(VI) in the South Process Pond through dissolution of metatorbernite as a surrogate mineral. For this case, rapid fluctuations in the Columbia River stage combined with the slow release of nonlabile U(VI) from contaminated sediment are found to play a predominant role in determining the migration behavior of U(VI) with sorption only a second‐order effect. Nevertheless, a multirate model was essential in explaining breakthrough curves obtained from laboratory column experiments using the same sediment and is demonstrated to be important in Phase III. The calculations demonstrate that U(VI) is discharged to the river at a highly fluctuating rate in a ratchet‐like behavior as the river stage rises and falls. The high‐frequency fluctuations must be resolved in the model to calculate the flux of U(VI) at the river boundary. By time averaging the instantaneous flux to average out noise superimposed on the river stage fluctuations, the cumulative U(VI) flux to the river is found to increase approximately linearly with time. The flow rate and U(VI) flux are highly sensitive to the conductance boundary condition that describes the river‐sediment interface. By adjusting the conductance coefficient to give a better match to the measured piezometric head, good agreement was obtained with field studies for both the mean flux of water of 109 kg/yr and U(VI) of 25 kg/yr at the river‐aquifer boundary for a computational domain encompassing the South Process Pond. Finally, it is demonstrated that, through global mass conservation, the U(VI) leach rate from the source region is related to the U(VI) flux at the river boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.