Abstract
Efficiently managing agricultural irrigation is vital for food security today and into the future under climate change. Yet, evaluating agriculture’s hydrological impacts and strategies to reduce them remains challenging due to a lack of field-scale data on crop water consumption. Here, we develop a method to fill this gap using remote sensing and machine learning, and leverage it to assess water saving strategies in California’s Central Valley. We find that switching to lower water intensity crops can reduce consumption by up to 93%, but this requires adopting uncommon crop types. Northern counties have substantially lower irrigation efficiencies than southern counties, suggesting another potential source of water savings. Other practices that do not alter land cover can save up to 11% of water consumption. These results reveal diverse approaches for achieving sustainable water use, emphasizing the potential of sub-field scale crop water consumption maps to guide water management in California and beyond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.