Abstract

Abstract: In this paper, a field‐scale applicability of three forms of artificial neural network algorithms in forecasting short‐term ground‐water levels at specific control points is presented. These algorithms are the feed‐forward back propagation (FFBP), radial basis networks (RBN), and generalized regression networks (GRN). Ground‐water level predictions from these algorithms are in turn to be used in an Optimized Regional Operations Plan that prescribes scheduled wellfield production for the coming four weeks. These models are up against each other for their accuracy of ground‐water level predictions on lead times ranging from a week to four weeks, ease of implementation, and execution times (mainly training time). In total, 208 networks of each of the three algorithms were developed for the study. It is shown that although learning algorithms have emerged as a viable solution at field scale much larger than previously studied, no single algorithm performs consistently better than others on all the criteria. On average, FFBP networks are 20 and 26%, respectively, more accurate than RBN and GRN in forecasting one week ahead water levels and this advantage drops to 5 and 9% accuracy in forecasting four weeks ahead water levels, whereas GRN posted a training time that is only 5% of the training time taken by that of FFBP networks. This may suggest that in field‐scale applications one may have to trade between the type of algorithm to be used and the degree to which a given objective is honored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.