Abstract

The classification that distinguishes whether machines are driving on roads or working in fields based on their global navigation satellite system (GNSS) trajectories is essential for effective management of cross-regional agricultural machinery services in China. In this paper, a novel field–road classification method utilizing multiple deep neural networks (MultiDNN) is proposed to enhance the accuracy of field and road point classification. The MultiDNN model incorporates a bi-directional long short-term memory network (BiLSTM), a topology adaptive graph convolution network (TAG), and a self-attention network (ATT) to effectively extract spatio-temporal features for field–road classification. The BiLSTM is used to capture temporal relationships along the time axis of a trajectory, providing global contextual information for each point. Then, the TAG network is used to obtain the spatio-temporal relationships between adjacent points in a trajectory, offering local contextual information for each point. Finally, the ATT network assigns varying weights to features to emphasize important characteristics. The performance of the MultiDNN model was evaluated using a wheat harvesting trajectory dataset, and the results showed that it achieved a high degree of accuracy, up to 89.75%, outperforming the best baseline method (GCN) by 2.79%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.