Abstract

—In this article, a field-programmable gate array based fuzzy sliding-mode controller is proposed to control a permanent magnet synchronous motor drive. First, the dynamics of a permanent magnet synchronous motor is derived, and the vector control scheme is introduced in the current loop. Next, to improve the performance of the permanent magnet synchronous motor drive, a fuzzy sliding-mode controller with an integral-operation switching surface is proposed and applied to the speed loop, in which a fuzzy inference mechanism is adopted to generate the reaching control signal. Further, an integrated hardware design method is developed to implement the field-oriented vector current controller and the proposed fuzzy sliding-mode speed controller on a single field programmable gate array chip. Finally, a prototyping platform based on an Altera field-programmable gate array is established to evaluate the ability of the proposed fully integrated solution in terms of control quality and time/area performances. The preferable performance of the proposed field-programmable gate array-based fuzzy sliding-mode control approach for permanent magnet synchronous motor drive is verified by the experimental results compared with the conventional proportional-integral control and sliding mode control schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call