Abstract

We present the comparison of a field-programmable-gate-array (FPGA) based digital servo module with an analog counterpart for the purpose of laser frequency stabilization to a high-finesse optical cavity. The transfer functions of both the digital and analog modules for proportional-integral-derivative control are measured. For the lasers stabilized to the cavity, we measure the singe-sideband power spectral density of fast phase noise by means of an optical beat with filtered light transmitted through the cavity. The comparison between the digital and analog modules is performed for two low-phase-noise diode lasers at 1120 and 665 nm wavelengths. The performance of the digital servo module compares well to the analog one for the lowest attained levels of 30 mrad for the integrated phase noise and 10-3 for the relative noise power. The laser linewidth is determined to be in the sub-kHz regime, only limited by the high-finesse cavity. Our work exploits the versatility of the FPGA-based servo module (STEMlab) when used with open-source software and hardware modifications. We demonstrated that such modules are suitable candidates for remote-controlled low-phase-noise applications in the fields of laser spectroscopy and atomic, molecular, and optical physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.