Abstract

Microimaging is of great significance in the biological and medical fields, since it can realize observations acting as important references for cellular research and disease diagnosis. However, traditional microscopy only offers qualitative sample contours; moreover, it is difficult to reach large-amount sample observations limited by the fixed field of view (FoV). To realize massive cellular measurements quantitatively, three designed quantitative interferometric microscopic cytometers based on the FoV scanning are introduced and compared in details in this article. These devices not only retrieve the quantitative sample phase distributions in the extended FoV, but also provide the detailed information of massive cells, such as cellular volume, area, and roundness. Considering their capabilities as quantitative imaging and large-amount sampling, it is believed that these quantitative interferometric microscopic cytometers (QIMCs) can be potentially adopted in high-throughput cell imaging and statistical analysis for both the biological and medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.