Abstract

AbstractSpur and groove (SAG) formations are found on the forereefs of many coral reefs worldwide. Modeling results have shown that SAG formations together with shoaling waves induce a nearshore Lagrangian circulation pattern of counter‐rotating circulation cells, but these have never been observed in the field. We present results from two separate field studies of SAG formations on Palmyra Atoll which show their effect on waves to be small, but reveal a persistent order 1 cm/s depth‐averaged Lagrangian offshore flow over the spur and onshore flow over the grooves. This circulation was stronger for larger, directly incident waves and low alongshore flow conditions, consistent with predictions from modeling. Favorable forcing conditions must be maintained on the order of 1 h to accelerate and develop the SAG circulation cells. The primary cross and alongshore depth‐averaged momentum balances were between the pressure gradient, radiation stress gradient, and nonlinear convective terms, and the bottom drag was similar to values found on other reefs. The vertical structure of these circulation cells was previously unknown and the results show a complex horizontal offshore Lagrangian flow over the spurs near the surface driven by alongshore variability in radiation stress gradients. Vertical flow was downward over the spur and upward over the groove, likely driven by alongshore differences in bottom stress and not by vortex forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.