Abstract

It is of great practical importance to study the vibration response characteristics of super high-rise buildings under an earthquake action to provide a basis for seismic design and later maintenance of structures in coastal areas. During this study, the Shanghai World Financial Center (SWFC)’s health monitoring system was utilized to monitor earthquakes of magnitude 6.4 in Taiwan, 6.0 in Japan, 7.2 in the East China Sea, and 4.4 in Jiangsu, in real-time. Through the improved Envelope Random Decrement Technique (E-RDT), the dynamic properties of super high-rise buildings were examined under different earthquake effects in terms of the acceleration power spectrum, natural frequency, damping ratio, and mode shape. The results demonstrated that (1) the vibration responses of the structure in X (East–West) and Y (North–South) directions under four earthquakes were consistent, and with increasing floor height, the discreteness of the amplitude and acceleration signals of vibration responses increased. (2) The first two natural frequencies of the structure in X and Y directions decreased with the increase in amplitude, but the damping ratio increased with the increase in amplitude. The minimum values of the first two natural frequencies are 0.1498 Hz and 0.4312 Hz, respectively, and the maximum values of the first two damping ratios are 0.0086 and 0.0068, respectively. (3) Under different earthquake excitations, the SWFC’s mode shape’s estimates were similar, and their change trends in the X and Y directions were nonlinear as the number of floors increased. The structure was not seriously damaged by the four earthquakes. This study can provide helpful information for the seismic design of super high-rise buildings based on its findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call