Abstract

The dynamics of large gravity waves are known to be modified from the linear model by nonlinear physics. In this paper we analyse Eulerian surface elevation time histories measured from two sites, Lake George (Australia) and the North Sea, to examine how weak nonlinearity has modified the shape of extreme wave groups relative to linear theory. We analyse the asymmetry of the extreme wave groups and find that, on average, the wave in front of an extreme wave is smaller than the wave following it. We also observe a contraction in the envelope width of the wave group relative to linear theory. The departures from linear theory are strongly correlated with the steepness of the underlying sea state and are generally consistent with theoretical expectations, providing strong evidence that such nonlinear phenomena arise in naturally occurring water waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.