Abstract
ABSTRACT Detecting the field maturity moment for maize (Zea mays L.) crop represents a relevant point to estimate its optimal harvest time. Knowing the optimal harvest time (defined by grain moisture content) at the end of the crop season is a major concern for maize farmers, as it could lead to substantial economic losses if not harvested on time. For this crop, optimal harvest time usually occurs 3–4 weeks after field maturity, depending on weather conditions. Therefore, this study focused on the interferometric coherence time-series analysis at the end of the maize crop season, to indirectly estimate the field maturity. For such purpose, a coherence object-based change detection method using Sentinel-1 SAR images was developed aiming to estimate the potential field maturity time. These estimations were assessed using an independent data set of field maturity dates obtained through field inspection and crop growth modelling. The technique was tested over 52 fields in the northwest region of Kansas, United States, with a detection rate of 80%, and a field maturity estimation error of 10 days (assessed with the root mean square error). The proposed method constitutes a promising approach to estimating the maize field maturity in near-real time, determining the field harvest readiness, and developing a decision support tool to assist farmers in prioritizing the allocation of fields at harvest time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.