Abstract

At the field level the demand for spatial information of soil properties is rapidly increasing owing to its requirements in precision agriculture and soil management. One of the most important properties is the cation exchange capacity (CEC, cmol(+)/kg) because it is an index of the shrink–swell potential and hence is a measure of soil structural resilience to tillage. However, CEC is time-consuming and expensive to measure. Various ancillary datasets and statistical methods can be used to predict CEC, but there is little scientific literature which implements this approach to map CEC or addresses the issue of the amount of ancillary data required to maximise precision and minimise bias of spatial prediction at the field level. We compare a standard least-squares multiple linear regression (MLR) model which includes 2 proximally sensed (EM38 and EM31), 3 remotely sensed (Red, Green and Blue spectral brightness), and 2 trend surface (Easting and Northing) variables as ancillary data or independent variables, and a stepwise MLR model which only includes the statistically valid EM38 signal data and the Easting trend surface vector. The latter is used as the basis for developing a hierarchical spatial regression model to predict CEC. The reliability of the model is analysed by comparing prediction precision (root mean square error) and bias (mean error) using degraded EM38 transect spacing (i.e. 96, 144, 192, 240, and 288 m) and comparing these with predictions achieved with the 48-m spacing. We conclude that the EM38 data available on the 96- and 144-m spacing are suitable at a reconnaissance level (i.e. broad-scale farming) and 24- or 48-m spacing are suitable at smaller levels where detailed information is necessary for siting the location of water reservoirs. In terms of soil management, CEC predictions determine where suitable subsoil exists for the purpose of soil profile inversion to improve the structural resilience of a topsoil that is susceptible to dispersion and surface crusting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.