Abstract

AbstractPrimary (e.g., quartz) and secondary (clay) minerals are key factors determining the physical and chemical characteristics of soil. Understanding spatial distribution of minerals at the field scale would, therefore, be of potential benefit for soil management. However, current analysis requires time‐consuming laboratory procedures and computational quantification analysis (e.g., SIROQUANT). Furthermore, mineral composition (e.g., quartz, kaolinite, illite and expandable clay minerals) must sum to 100. We aimed to add value to laboratory data by developing multiple linear regression (MLR) relationships between mineralogy and ancillary data such as digital numbers (DNs) (i.e., Red [R], Green [G] and Blue [B]) acquired from remotely sensed air‐photographs and soil apparent electrical conductivity (ECa – mS/m) measured from proximal sensing electromagnetic (EM) instruments (i.e., EM38 and EM31). To account for composition, we compare results from the MLR approach with those from additive log‐ratio (ALR) transformation of mineralogy prior to MLR modelling. This approach together with various ancillary data and trend surface parameters (i.e., scaled Easting and Northing) has greater precision and less bias of prediction than the MLR approach using untransformed data. Our approach also enables predictions to sum to 100. We conclude that the most useful ancillary data to predict the abundance of quartz, kaolinite and illite are B DNs and EM31, while expandable clays are best predicted with R DNs, EM38 and scaled Northing. The use of ancillary data to map mineralogical components combined with ALR‐MLR is an effective approach, with resulting maps providing insights into soil and water management issues consistent with farmer experience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.