Abstract

The interaction between oxygen and clean, well-ordered rhenium surfaces has been investigated in the field ion microscope over a wide range of temperatures. The surface structure of vacuum annealed specimens was extensively modified by the presence of adsorbed oxygen. At partial monolayer coverages, surface metal atom rearrangement was inhibited, particularly at {112̄2}, but at coverages near saturation, facets were produced at {101̄0} at a lower temperature than on the clean surface, resulting in the exposure of an increased proportion of closepacked surface structures and suggesting a change in the rearrangement mechanism at high coverages. The production of facets at the major poles was temperature and coverage dependent as a result of the varying influence of adsorbed oxygen on surface free energy. A decrease in oxygen coverage was observed at 1200–1300 K on near-saturated surfaces, which may be associated with the formation of volatile ReO 3 from regions where oxygen concentration exceeds a critical value. There was little evidence of the production of a discrete surface oxide phase formed on specimens heated in the presence of gas phase oxygen, but a reduction in specimen radius as a result of volatile oxide formation was observed at pressures greater than 10 −4 Torr and temperatures above 1400 K. It is concluded that the final structure of rhenium surfaces heated in oxygen is dependent upon the rate of oxide formation, the effective oxygen coverage during oxidation, and the extent of surface rearrangement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call