Abstract

We report magnetic-field-induced first-order phase transitions in the ferro-quadrupole (FQ) ordered state of PrTi2Al20, in which non-Kramers Pr3+ ions with two 4f electrons have a non-magnetic Gamma3 doublet ground state in the cubic Td crystalline electric field. For magnetic fields along [111], 27Al-NMR and magnetization experiments reveal Qz \propto 3z2-r2 type FQ order below 2 K independent of field strength. Magnetic fields along [001] or [110], however, induce discontinuous switching of order parameters within the two dimensional space spanned by Qz and Qx \propto x2-y2 at small field values less than a few tesla. A symmetry-based theoretical analysis shows that the transitions can be caused by competition between the magnetic Zeeman interaction and anisotropy in the quadrupole-quadrupole interactions, if the latter dominates over the former in low fields and vice versa in high fields. Furthermore, striking violation of proportionality between NMR Knight shift and magnetic susceptibility is observed in the symmetry-broken FQ phases, indicating significant influence of FQ order on the hybridization between conduction and f electrons, which in turn mediates the RKKY-type quadrupole interaction causing the FQ order. This feedback effect may be a specific feature of quadrupole orders not commonly observed in magnetic phase transitions and play a key role for inducing the discontinuous transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call