Abstract

We present the simulation of time-resolved photoelectron spectra of Ag(3) involving excitation from the linear transition state, where nonadiabatic relaxation takes place in a complex manifold of electronic states. Thus, we address ultrafast processes reachable by negative ion-to neutral-to positive ion (NeNePo) spectroscopy starting from the linear Ag anionic species. For this purpose we use our newly developed field-induced surface hopping method (FISH) augmented for the description of photoionization processes. Furthermore we employ our method for nonadiabatic molecular dynamics "on the fly" in the framework of time-dependent density functional theory generalized for open shell systems. Our presented approach is generally applicable for the prediction of time-resolved photoelectron spectra and their analysis in systems with complex electronic structure as well as many nuclear degrees freedom. This theoretical development should serve to stimulate new ultrafast experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call