Abstract

We use the electromagnetic stress tensor to describe the elongation of paramagnetic drops in uniform magnetic fields. This approach implies a linear relationship between the shape of the drops and the square of the applied field, which we confirm experimentally. We show that this effect scales with the volume and susceptibility of the drops. By using this unified electromagnetic approach, we highlight the potential applications of combining electric and magnetic techniques for controlled shaping of drops in liquid displays, liquid lenses, and chemical mixing of drops in microfluidics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.