Abstract
We study the magnetic-field effect on a Kondo insulator by exploiting the periodic Anderson model with the Zeeman term. The analysis using dynamical mean field theory combined with quantum Monte Carlo simulations determines the detailed phase diagram at finite temperatures. At low temperatures, the magnetic field drives the Kondo insulator to a transverse antiferromagnetic phase, which further enters a polarized metallic phase at higher fields. The antiferromagnetic transition temperature $T_c$ takes a maximum when the Zeeman energy is nearly equal to the quasi-particle gap. In the paramagnetic phase above $T_c$, we find that the electron mass gets largest around the field where the quasi-particle gap is closed. It is also shown that the induced moment of conduction electrons changes its direction from antiparallel to parallel to the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.