Abstract

Using single crystal neutron scattering we show that the magnetic structure Ni$_3$TeO$_6$ at fields above 8.6 T along the $c$ axis changes from a commensurate collinear antiferromagnetic structure with spins along c and ordering vector $Q_C$= (0 0 1.5), to a conical spiral with propagation vector $Q_{IC}$= (0 0 1.5$\pm\delta$),$\delta\sim$0.18, having a significant spin component in the ($a$,$b$) plane. We determine the phase diagram of this material in magnetic fields up to 10.5 T along $c$ and show the phase transition between the low field and conical spiral phases is of first order by observing a discontinuous jump of the ordering vector. $Q_{IC}$ is found to drift both as function of magnetic field and temperature. Preliminary inelastic neutron scattering reveals that the spin wave gap in zero field has minima exactly at $Q_{IC}$ and a gap of about 1.1 meV consisting with a cross-over around 8.6 T. Our findings excludes the possibility of the inverse Dzyaloshinskii-Moriya interaction as a cause for the giant magneto-electric coupling earlier observed in this material and advocates for the symmetric exchangestriction as the origin of this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.