Abstract

Femtosecond-laser field-induced ionization and Coulomb explosion of diatomic nitrogen were systematically investigated using time-of-flight mass and photoelectron spectrometry. Both linearly and circularly polarized femtosecond laser pulses were used at intensities varying from 5×1013 to 2×1015 W/cm2. Strong N2 +, N2 2+, N+, N2+ and N3+ ion signals were observed for horizontally polarized pulses. Moreover, signals from the atomic ions exhibited a double-peak structure. Suppression of ionization was observed for circularly polarized pulses, while for vertically polarized pulses, only N2 + and N2 2+ ions were observed. The angular distributions of the ions were measured under zero-field conditions in the ionization zone. The atomic ions N+, N2+ and N3+ exhibited highly anisotropic distributions, with maxima along the laser polarization vector and zeroes normal to the laser polarization vector. In contrast to the atomic ions, N2 + exhibited a strong isotropic angular distribution. These observations indicate that dynamic alignment is responsible for the observed anisotropic angular distribution of the atomic ions. The kinetic energy spectrum of the photoelectrons is featureless and broad, extending above the ponderomotive potential of the laser pulse. The angular distribution is markedly anisotropic, with a maximum along the laser polarization vector. These observations further support the notion that the field-ionization mechanism is dominant under our experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call