Abstract

We study isotropic antiferromagnetic Heisenberg chains coupled by antiferromagnetic Ising interaction as an effective spin model for the ytterbium aluminum perovskite YbAlO$_3$. Using the density-matrix renormalization group (DMRG) method we calculate the magnetization curve, local spin, central charge, and dynamical spin structure factors in the presence of magnetic field. From the fitting of the experimental magnetization curve, the effective intrachain and interchain couplings are estimated as $J=2.3$K and $J_{\rm ic}=0.8$K, respectively. We can quantitatively explain the experimental observations: (i) phase transition from antiferromagnetic to incommensurate order at field 0.35T, and (ii) quantum critical behaviors at the saturation field of 1.21T. Furthermore, the low-energy excitations in the experimental inelastic neutron scattering spectra can be well described by our DMRG results of the dynamical structure factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call