Abstract
Four new end-on pseudohalide-bridged dinuclear copper(II) complexes, [Cu2(L(1))2(N3)2]·DMF (1), [Cu2(L(2))2(N3)2] (2), [Cu2(L(3))2(NCS)2] (3), and [Cu2(L(4))2(N3)2] (4) {where HL(1), HL(2), HL(3), and HL(4) are tridentate N2O donor Schiff bases}, are synthesized and characterized. Complexes 1, 2, and 3 possess π···π stacking interactions, while in addition hydrogen-bonding interactions are present in 1 and 3. However, by contrast, complex 4 contains neither type of interaction. Field-induced long-range ferromagnetic ordering beyond 0.9 T is observed in complexes 1 and 2 due to π···π stacking interactions, while ferroelectric ordering is observed in complexes 1 and 3 due to hydrogen-bonding interactions. Most interestingly, complex 1, which contains both π···π stacking and hydrogen-bonding interactions, shows multiferroic behavior as a result of coupling between the dielectric and magnetic fields with 8% change in the magneto-dielectric effect at room temperature. We believe that from this study will emerge a new class of multiferroic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.