Abstract
Shubnikov-de Haas oscillations reveal at high fields an abrupt reconstruction of the Fermi surface within the hidden-order (HO) phase of URu2Si2. Taken together with reported Hall effect results, this implies an increase in the effective carrier density and suggests that the field suppression of the HO state is ultimately related to destabilizing a gap in the spectrum of itinerant quasiparticles. While hydrostatic pressure favors antiferromagnetism in detriment to the HO state, it has a modest effect on the complex H-T phase diagram. Instead of phase separation between HO and antiferromagnetism our observations indicate adiabatic continuity between both orderings with field and pressure changing their relative weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.