Abstract
AbstractCreation and annihilation of skyrmions are two crucial issues for constructing skyrmion‐based memory and logic devices. To date, these operations were mainly achieved by means of external magnetic, electrical, and optical modulations. In this work, we demonstrated an effective strain‐induced skyrmion nucleation/annihilation phenomenon in [Pt/Co/Ta]n multilayers utilizing the shape memory effect of a TiNiNb substrate. A tunable tensile strain up to 1.0% can be realized in the films by thermally driving phase transition of the substrate, which significantly decreases the nucleation field of skyrmions by as many as 400 Oe and facilitates the field‐free manipulation of skyrmions with the strain. Such a strain effect can be attributed to the synergetic interplay of the planar magnetic moment twirling and decrement of interfacial Dzyaloshinskii–Moriya interaction. In addition, the strain tunability is found to be strongly related to the strain direction due to magnetoelastic interaction. These findings provide a novel strategy for developing strain‐assisted skyrmion‐based memory and logic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.