Abstract

Ferromagnetic (FM) electrocatalysts have been demonstrated to reduce the kinetic barrier of oxygen evolution reaction (OER) by spin-dependent kinetics and thus enhance the efficiency fundamentally. Accordingly, FM two-dimensional (2D) materials with unique physicochemical properties are expected to be promising oxygen-evolution catalysts; however, related research is yet to be reported due to their air-instabilities and low Curie temperatures (TC). Here, based on the synthesis of 2D air-stable FM Cr2Te3 nanosheets with a low TC around 200 K, room-temperature ferromagnetism is achieved in Cr2Te3 by proximity to an antiferromagnetic (AFM) CrOOH, demonstrating the accomplishment of long-ranged FM ordering in Cr2Te3 because the magnetic proximity effect stems from paramagnetic (PM)/AFM heterostructure. Therefore, the OER performance can be permanently promoted (without applied magnetic field due to nonvolatile nature of spin) after magnetization. This work demonstrates that a representative PM/AFM 2D heterostructure, Cr2Te3/CrOOH, is expected to be a high-efficient magnetic heterostructure catalysts for oxygen-evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.