Abstract

A field tracer experiment was conducted in a lateral flow field in the weathered and highly fractured upper 6 m of a 40‐m‐thick clay‐rich till plain in southwestern Ontario. In the upper 3 m where fractures are closely spaced (<0.13 m) the advancing front (C/C0 = 0.01) of the nonreactive solute tracers, bromide and 18O, migrated at rates of 0.01 to 0.07 m/d, over distances of 4 and 6 m and under a lateral hydraulic gradient of 0.24. In this same zone, two strains of colloid‐sized bacteriophage tracers migrated at rates of 2 to >5 m/d. Simulations with a discrete fracture/porous matrix flow and transport model, which used the cubic law for flow in fractures, showed that diffusion of the solutes, but not the much larger colloids, into the matrix pore water between fractures is sufficient to cause the observed difference in solute and colloid transport rates. Transport‐derived and hydraulic conductivity‐derived fracture aperture values were similar, within a factor of 3 and falling mainly within a range of 5–40 μm. In the upper 3 m the solute tracers were evenly distributed between pore water in the fractures and the matrix, and as a result, solute transport can be closely approximated with an equivalent porous medium (EPM) approach. Below this depth, fractures are more widely spaced (0.13 to >1 m) with concentration peaks tending to occur near visible fractures, and solute transport cannot be adequately described with an EPM approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.